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Abstract. This paper proposes the combination of homomorphic encryption
and verifiable computation to avoid key recovery attacks and achieve CCAI-
secure constructions of Somewhat Homomorphic Encryption (SHE) schemes
described in the literature. We also provide concrete parameters, based on the
best-attack analysis, concluding that the approximate greatest common divisor
(AGCD) [van Dijk et al. 2010] family of SHE schemes may be the best imple-
mentation choice under certain circumstances.

1. Introduction

Homomorphic encryption has been a topic of great interest for the Cryptology commu-
nity over the last few years, since Craig Gentry’s breakthrough in 2009 [Gentry 2009].
Ciphertexts generated by a homomorphic encryption scheme can be algebraically manip-
ulated, i. e. it is possible to add and multiply ciphertexts preversing the same operations
over the corresponding plaintexts. A Fully Homomorphic Encryption (FHE) is one that
allows us to run arbitrary algorithms over encrypted data. In other words, given an ar-
bitrary algorithm A, it is possible to find an equivalent algorithm A" such that, if we
consider the input parameters of A’, say (ci, ..., ¢), we have that they correspond to the
componentwise encryption of the input parameters of .4, say (my, ..., m;). Furthermore,
we have that the output of A’ is an encryption of the output of .4 when executed using
input arguments as described above. Although Fully Homomorphic Encryption (FHE)
is yet to become practical, Somewhat Homomorphic Encryption (SHE) schemes can be
used to construct practical applications. An important drawback, however, is the fact that
all but one of the SHE schemes described in the literature are susceptible to key recovery
attacks, a concrete threat in many scenarios. In this work, we investigate how verifiable
computation (see Section 1.2) can be combined with homomorphic encryption in order to
avoid key recovery attacks. Indeed, we show that it is possible to achieve CCA1-security
for the homomorphic evaluation of quadratic multivariate polynomials.

1.1. Main contributions

During the PhD program I have participated in a research project about efficient imple-
mentation of elliptic curve protocols for Android architecture, giving rise to two publica-
tions [Braga and Morais 2014, Braga et al. 2015]. Since this research area is not related
to homomorphic encryption, we are not going to explore it further here.

We have contributed in a book chapter, that corresponds to an introduc-
tion to Lattice-based Cryptography [Barreto et al. 2014].  This work derived from
a short course in 2013 [Barretoetal. 2013] and gave rise to a technical re-
port [Morais et al. 2016b]. We have also contributed with an introduction to homomor-
phic encryption [Dahab and Morais 2012], which is the text of a short course that gave
rise to another technical report [Morais et al. 2016a].
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One of the main results of my thesis is a key-recovery attack for the NTRU-based
family of SHE schemes [Dahab et al. 2015]. We then contributed constructively to this
line of research, showing how verifiable computation can be used to construct CCAl-
secure SHE schemes [Morais et al. ], for the case of quadratic multivariate polynomial
functions.

1.2. Homomorphic verifiable computation

Although homomorphic encryption is a very flexible cryptographic primitive, when ap-
plied to the cloud computing scenario it lacks an important property: the ability to verify
if a given homomorphic computation corresponds to what the client desired. A verifi-
able computation scheme could solve this problem, provided two requirements are met.
First, the cloud must not spend much more time to perform the verifiable computation
when compared to the non-verifiable solution. Second, the client must be able to ver-
ify the result faster than the time it takes to perform the entire computation by himself.
There are proposals [Gennaro et al. 2010, Chung et al. 2010] that use homomorphic en-
cryption to construct a verifiable scheme, because it is possible to offer input and output
privacy, since both are encrypted. However, the underlying security model does not allow
verification queries. Recently, Fiore, Gennaro and Pastro [Fiore et al. 2014] proposed a
new construction that does allow verification queries, improving on the security model.
They showed how to solve practical problems, such as computing quadratic multivariate
polynomials over encrypted data, which can be used to homomorphically compute statis-
tical functions. We remark that this application requires only one level of multiplications,
which is an important characteristic to be considered in order to calculate the parameters
of the underlying SHE scheme.

Definition 1.1. A verifiable computation scheme VC is defined by the algorithms
(KEYGEN, PROBGEN, COMPUTE, VERIFY), as follows:

Key generation. Algorithm KEYGEN(1?, f) generates secret key sk and
evaluation key esk.

Problem generation. Using secret key sk, algorithm PROBGEN receives as
input ciphertext c; and computes the corresponding authentication tag o;, such that
0; = AUTH i (¢4, (-, 7).

Verification. Given the secret sk, tag o and ciphertext ¢, we have that
VERIFY (0, ¢) returns 1 if ¢ = f([¢;]) and 0 = AUTH(c, (+,4)). Otherwise, it
returns 0.

Evaluation. Given o4, ...,0, and the description of function f, algorithm
COMPUTE ., ([03], A, f) returns the authentication tag o that corresponds to the ci-
phertext ¢ = BEVAL.q([ci], f) obtained by running the EVAL algorithm from the
underlying homomorphic encryption scheme. We say that the VC scheme is correct if
VERIFY s« (0, ¢) outputs 1.

1.3. Homomorphic encryption

Informally, homomorphic encryption provides the possibility of having a pair of encryp-
tion and decryption functions, ENC, DEC, that allows the computation of a function f on
an encrypted text ¢, such that DEC(f(c)) = f(m), where ¢ = ENC(m). That is, allowing

424 ©2016 SBC — Soc. Bras. de Computagéo



XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

functions to be computed on encrypted texts without the need for decrypting them first.
The following two definitions formalize this notion.

Definition 1.2. Correctness. A scheme E(KEYGEN, DEC, ENC, EVAL) is correct
if, for a determined circuit C and every key pair (sk,pk), where sk is the pri-
vate key and pk is the public key generated by KEYGEN, any message tuple
m = (my,...,my) and corresponding ciphertexts ¢ = (cy,...,¢,), that is, ¢; =
ENC,x(m;) for 1 <i <, then we have that

DEC(EVAL,(C,¢)) = C(m).

Furthermore, algorithms KEYGEN, DEC, ENC and EVAL must have polynomial
complexity.

Definition 1.3. Fully Homomorphic Encryption. A scheme & is correct for a class
Sc of circuits, if it is correct for each C € Sc. Moreover, £ is denominated fully
homomorphic if it is correct for every algebraic circuit, or, equivalently, if it is correct
for every Boolean circuit.

SHE schemes correspond to homomorphic encryption schemes that are correct for
circuits whose multiplicative depth is limited by a certain upper bound, denoted by ¢.

1.4. Security model

We say that a cryptosystem is secure against chosen ciphertext attacks (CCA2) if there
is no polynomial time adversary that can win the following game with non-negligible
probability.

Setup. The challenger obtains (sk,pk) = KEYGEN(\), where A is a security
parameter, and sends pk to the adversary A.

Queries. A sends ciphertexts to the challenger, before or after the challenge, who
returns the corresponding plaintexts.

Challenge. The adversary randomly generates two plaintexts mg, m; € M and
sends to the challenger, who then randomly chooses a bit b € {0, 1} and computes the
ciphertext ¢ = ENCy (m;). The challenger sends c to A.

Answer. A sends a bit b’ to the challenger and wins the game if &' = b.

If we allow queries only before the challenge, we say that the cryptosystem is
secure against CCA1 adversaries (lunchtime attacks). Queries can be interpreted as ac-
cesses to a decryption oracle. If, instead, we only allow access to an encryption oracle,
namely the adversary can choose any message to be encrypted under the same key pair,
then we say that the cryptosystem is secure against chosen plaintext attacks (CPA).

In homomorphic encryption, it is impossible to achieve CCA2 security, because
the adversary can simply add to the encrypted message some encryption of zero, which
can be obtained by querying the encryption oracle, and send it back to the decryption ora-
cle. Many FHE schemes have as public value an encryption of the private key bits, which
can be sent to the decryption oracle before the challenge, making such schemes insecure
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against CCA1 adversaries. Indeed, a key recovery attack is stronger than a CCA1 attack;
also, Loftus et al [Loftus et al. 2011] showed that Gentry’s construction over ideal lattices
is vulnerable to key recovery attacks and presented the only somewhat homomorphic en-
cryption scheme that is known to be CCA1-secure.

In 2015, Dahab, Galbraith and Morais showed that the NTRU-based family of
SHE schemes is vulnerable to key recovery attacks [Dahab et al. 2015]. Hence, except
for Loftus et al’s [Loftus et al. 2011] scheme, no other known SHE proposal achieves
CCA1 security.

2. The scheme

The secret key encryption scheme that can homomorphically compute the quadratic mul-
tivariate polynomial f over encrypted input is defined as follows:

Key generation. Given the description of the function f, let E-pa be a CPA-secure
secret-key homomorphic encryption scheme and let VC be a private and adaptively secure
verifiable computation scheme as previously defined and containing the inherent message
authentication algorithm HomMAC. We compute (dk) = Ecpa. KEYGEN(1?, f) and
(sk,esk) = VC.KEYGEN(1*, f). The secret key is given by (dk, sk) and the evaluation
key is given by (edk, esk).

Encryption. For m € M and multi-label (A, ), if the multi-label was not previ-
ously used, compute ¢ = Ecpa.ENCgi (m), compute

0 = HomMAC.AUTH (¢, A, 7)
and output (¢, 0, A, 4, fip).

Decryption. For (c,0,Ai, f*) € C, when f* is the identity function
fip, if HomMAC.VERy (0, ¢, A, i) rejects then return L. When f* = f, if
VC.VERIFY (0, A, f) rejects then return L, otherwise return

m = SCPA-DECdk (C)

Evaluation. Given the evaluation key esk and ([¢;], [0;], f), for 1 < ¢ < ¢, return
(¢, 0), where (¢, 0) = VC.COMPUTE.«([ci], [04], f)-

3. AGCD-based scheme

In this section we describe the construction of homomorphic encryption over
the integers, which was originally proposed by Dijk, Gentry, Halevi and
Vaikuntanathan [van Dijk et al. 2010], and was improved many times after-
wards [Coron et al. 2014, Coron et al. 2012]. Among these improvements, we focus
on batch computation by extending the original idea to apply the Chinese Remainder
Theorem [Cheon et al. 2013]. The secret-key somewhat homomorphic cryptosystem is

defined as follows:
Definition 1. Let )\ be the security parameter and consider the parameters p,n,~ as

functions of \. The algorithm KEYGEN randomly generates the secret key dk as an odd
integer p with bit-length 1. To encrypt a message m € Zg, the algorithm ENC randomly
chooses the integers  with p bits and q with v /n bits and computes the ciphertext:

c=qp+ Qr+m.
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The decryption algorithm computes m = DEC i (c) = [c| (mod Q). It is easy to

ee that the en n is.a ring homomorphism.
i) ﬁlnfltlon 2. nszc? er the fo 7l%wing strg;}unon

D,y,(p)={aw+r| q<7ZnNI[0,27/p),
r< ZN(=2°2°)}.

Given polynomially many samples from D, ,(p), finding p is a problem called
approximate greatest common divisor (AGCD).

The AGCD problem was studied by Howgrave-Graham in the context of crypt-
analysis [Howgrave-Graham 2001]. To obtain a secure cryptosystem, parameters p, 1, 7y

must be chosen to resist against attacks described in the literature [Lepoint 2014].
Definition 3. The symmetric scheme described above can be adapted to allow batch op-

erations [Cheon et al. 2013] as follows. Let { be the number of slots in the the plaintext
space M and w for the bit-length of each slot. We assume that ({,w) are fixed and public
values. Also, we use secondary security parameters (p,n,7) to describe the cryptosys-
tem. Since these parameters are functions of the primary security parameter \, and are
intimately connected to the complexity of the best-known attacks to the AGCD problem,
we postpone the concrete description in order to get a cleaner definition of the scheme.

Key Generation. The KEYGEN(1%, f) algorithm chooses pairwise coprime inte-
gers Q; with w bits, for 1 < j < {, and pairwise coprime p; with 1 bits, for 0 < j < (. We
have that (); represents the size of each plaintext slot, while the plaintext space is given
by M = Z¢g, X --- X Zg,. Note that M is isomorphic to Zg, for () = H§:1 Qj. The
algorithm computes p = Hﬁ:o pj. The ciphertext space is given by C = Z,. The secret
key is given by dk = [p;| and the evaluation key is edk = p.

Encryption. Given [m;] € M, algorithm ENC4([m;]) chooses a random inte-
ger 1o in the interval (—po/2,po/2] and the random integers r1,. .., re with p bits. The
ciphertext is computed by

Cc = CRT(TQ, [mj + Tij]),
where CRT returns the unique integer modulo p that is congruent to ro modulo py and
congruent to m;~+r;Q; modulo pj, for every j. Thus the output is equal to ¢ = ENC g(m).

Decryption. Given c € C, the DEC 4 (c) algorithm computes
m; =c¢ (mod p;) (mod Q;),
for1 < j < and outputs [m;] = DEC4(c).
Evaluation. Homomorphic operations are carried out by simply adding and mul-
tiplying integers modulo p.
The construction makes use of the following parameters:

e ~ is the bit-length of ciphertexts. This parameter must be large enough in or-
der to avoid attacks against the AGCD problem, such as the ones derived from
Coppersmith’s method, as for example Howgrave-Graham and Cohn-Heninger
attacks, the simultaneous Diophantine approximation strategy of Lagarias and
Nguyen and Stern’s orthogonal lattice attack. In summary, we have that these
attacks lead to the condition v = n?Q(\), as described in Tancréde Lepoint’s PhD
thesis [Lepoint 2014];
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e 7 is the bit-length of secret key p;. It must be large enough to accommodate the
noise growth after homomorphic operations. However, it must also be quadratic
in the security parameter in order to avoid the elliptic curve method (ECM) fac-
torization attack;

e p is the bit-length of the noise 7;.  This parameter must be chosen
satisfying p = Q()\), such that the scheme resists attacks against the
noise [Chen and Nguyen 2012].

4. Choice of parameters and conclusion

We followed the ideas presented in Tancréde Lepoint PhD thesis [Lepoint 2014] in order
to choose parameters to our scheme. Firstly, we compute 7 to avoid the ECM factoriza-
tion attack. Then we establish an upper bound for p and . Thus, we can compute the
ciphertext size to resist against the orthogonal lattice attack by decreasing the value of
the noise parameter p until it is secure against Chen and Nguyen’s attack. Afterwards,
since we have calculated the values of p, n and ~y as in Table 1, we can obtain the scheme
parameters ¢ and w, with which we can calculate the plaintext size and the overhead of
the scheme. We implemented a routine in Sage to calculate these values and the result is
shown in Table 2. To compute ¢ we had to decrease the size of the ciphertext from ~ to
v =" — (¢ —1)n. In [Cheon et al. 2013], the authors show that the AGCD; -, problem,
the usual approximate GCD problem, can be reduced to the AGCD, - problem, i.e. the
CRT-based construction defined in Section 3. Then we have recomputed the ciphertext
size using the relation 7' = 1.5 and calculated the number of slots using £ = ~/2.

| X [ p| n | vMBit) |
80 |96 | 351 1.78
112 | 94 | 475 3.27
128 | 92 | 603 5.28

Table 1. AGCD parameters

v m
A (MBits) 14 w (KBits) overhead
80 2.67 | 2535 | 67 170 15.70
112 | 490 | 3442 | 131 451 10.87

128 | 792 | 4378 | 197 | 862 9.18

Table 2. Low overhead configuration

If we smaller ciphertexts are desired, then we can use the relations ' = 1.1 and
¢ = ~/10n, resulting in a larger overhead, as shown in Table 3.

In this work we proposed the utilization of verifiable computation to mitigate the
key recovery attack problem in the context of homomorphic encryption. The proposed
scheme however can only evaluate quadratic multivariate polynomials. This is enough to
compute some statistical functions over encrypted data under the CCA1 security model.
Remarkably, regarding this scenario, our AGCD-based construction offers an interesting
choice of parameters.
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v m
A (MBits) 14 w (KBits) overhead
80 1.95 | 507 | 67 34 57.40
112 | 3.59 | 688 | 131 90 39.88

128 | 5.80 | 875|197 | 172 33.72

Table 3. Smaller ciphertext configuration
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