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Abstract. To protect against brute force attacks, modern password-based au-
thentication systems usually employ mechanisms known as Password Hashing
Schemes (PHS). Basically, a PHS is a cryptographic algorithm that generates a
sequence of pseudorandom bits from a user-defined password, allowing the user
to configure the computational costs involved in the process aiming to raise the
costs of attackers testing multiple passwords trying to guess the correct one. In
this context, the goal of this research effort is to propose a novel and superior
PHS alternative. Specifically, the objective is to improve the Lyra algorithm, a
PHS built upon cryptographic sponges whose project counted with the authors’
participation. The resulting solution, called Lyra2, preserves the efficiency and
flexibility of Lyra, and it brings important improvements when compared to its
predecessor: (1) it allows a higher security level against attack venues involving
time-memory trade-offs; (2) it includes tweaks for increasing the costs involved
in the construction of dedicated hardware to attack; (3) it balances resistance
against side-channel threats and attacks relying on cheaper (and, hence, slower)
storage devices. Besides describing the algorithm’s design rationale in detail,
the thesis also includes a detailed analysis of its security and performance in
different platforms. It is worth mentioning that Lyra2 received a special recog-
nition in the Password Hashing Competition (PHC).

1. Introduction

User authentication is one of the most vital elements in modern computer security. Even
though there are authentication mechanisms based on biometric devices (“what the user
is”) or physical devices such as smart cards (“what the user has”), the most widespread
strategy still is to rely on secret passwords (“what the user knows”). This happens because
password-based authentication remains as the most cost effective and efficient method
of maintaining a shared secret between a user and a computer system (Chakrabarti and
Singbal 2007).

Password-based systems usually employ some cryptographic algorithm that al-
lows the generation of a pseudorandom string of bits from the password itself, known as a
Password Hashing Scheme (PHS), or Key Derivation Function (KDF) (NIST 2009). Typ-
ically, the output of the PHS is employed in one of two manners (Percival 2009): it can
be locally stored in the form of a “token” for future verifications of the password or used

* Full thesis and implementations available at http://lyra2.net/
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as the secret key for encrypting and/or authenticating data. Whichever the case, such so-
lutions employ internally a one-way (e.g., hash) function, so that recovering the password
from the PHS’s output is computationally infeasible (Percival 2009; Kaliski 2000).

Despite the popularity of password-based authentication, the fact that most users
choose quite short passwords leads to a serious issue: they commonly have much less en-
tropy than typically required by cryptographic keys (NIST 2011). Such weak passwords
greatly facilitate many kinds of “brute-force” attacks, such as dictionary attacks and ex-
haustive search (Chakrabarti and Singbal 2007; Herley et al. 2009), allowing attackers
to completely bypass the non-invertibility property of the password hashing process. The
feasibility of such attacks depends basically on the amount of resources available to the
attacker, who can speed up the process by performing many tests in parallel.

2. Motivation

A straightforward approach for addressing this problem is to force users to choose com-
plex passwords. This is unadvised, however, because such passwords would be harder to
memorize and, thus, more easily forgotten or stolen due to the users’ need of writing them
down, defeating the whole purpose of authentication (Chakrabarti and Singbal 2007). For
this reason, modern password hashing solutions usually employ mechanisms for increas-
ing the cost of brute force attacks. Schemes such as PBKDF (Kaliski 2000) and bcrypt
(Provos and Mazieres 1999), for example, include a configurable parameter that controls
the number of iterations performed, allowing the user to adjust the time required by the
password hashing process.

A more recent proposal, scrypt (Percival 2009), allows users to control both pro-
cessing time and memory usage, raising the cost of password recovery by increasing the
silicon space required for running the PHS in custom hardware, or the amount of RAM
required in a Graphics Processing Unit (GPU). Since this may raise the RAM costs of
password cracking to unbearable levels, attackers may try to trade memory for process-
ing time, discarding (parts of) the memory used and recomputing the discarded informa-
tion when it becomes necessary (Percival 2009). The exploitation of such time-memory
trade-offs (TMTO) leads to the hereby-called low-memory attacks. Another approach that
might be used by attackers trying to reduce the costs of password cracking is to use low-
cost (and, thus, slower) storage devices for keeping all memory used in the legitimate
process, using the spare budget to run more tests in parallel and, thus, compensating the
lower speed of each test; we call this approach a slow-memory attack.

Besides the need for protection against low- and slow-memory attacks, there is
also interest in the development of solutions that are safe against side-channel attacks, in
especial the so-called cache-timing attacks. Basically, a cache-timing attack is possible
if the attacker can observe a machine’s timing behavior by monitoring its access to cache
memory (e.g., the occurrence of cache-misses), building a profile of such occurrences for
a legitimate password hashing process (Forler et al. 2013; Bernstein 2005). Then, at least
in theory, if the password being tested does not match the observed cache-timing behavior,
the test could be aborted earlier, saving resources. Although this class of attack has not
been effectively implemented in the context of PHSs, it has been shown to be effective,
for example, against certain implementations of the Advanced Encryption Standard (AES)
(NIST 2001) and RSA (Rivest et al. 1978).
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The considerable interest by the research community in developing new (and bet-
ter) password hashing alternatives has recently even led to the creation of a cryptographic
competition with this specific purpose, the Password Hashing Competition (PHC 2013).

3. Goals and Original Contributions

Aiming to address this need for stronger alternatives, our early studies led to the proposal
of Lyra (Almeida et al. 2014), a mode of operation of cryptographic sponges (Bertoni
et al. 2007; Bertoni et al. 2011) for password hashing. In this research, we propose an
improved version of Lyra, called simply Lyra2. Basically, Lyra2 preserves the flexibil-
ity and efficiency of Lyra, including: (1) the ability to configure the desired amount of
memory and processing time to be used by the algorithm; (2) the capacity of providing a
higher memory usage than what is obtained with scrypt for a similar processing time.

In addition, it brings important security improvements when compared to its
predecessor: (1) it allows a higher security level against attack venues involving time-
memory trade-offs (TMTO); (2) it includes tweaks to increase the costs involved in the
construction of dedicated hardware for attacking the algorithm (e.g., FPGAs or ASICs);
(3) it balances resistance against side-channel threats and attacks relying on cheaper (and,
hence, slower) storage devices. For example, the processing cost of memory-free attacks
against the algorithm grows exponentially with its time-controlling parameter, surpass-
ing scrypt’s quadratic growth in the same conditions. Hence, with a suitable choice of
parameters, the attack approach of using extra processing for circumventing (part of) the
algorithm’s memory needs becomes quickly impractical. In addition, for an identical
processing time, Lyra2 allows for a higher memory usage than its counterparts, further
raising the costs of any possible attack venue.

4. Brief overview of the state-of-the-art

Arguably, the main password hashing solutions currently in use are (PHC 2013):
PBKDF2 (Kaliski 2000), bcrypt (Provos and Mazieres 1999) and scrypt (Percival 2009).
Nevertheless, until recently scrypt was the only solution available in the literature ex-
ploring both memory and processing costs. This scenario changed with Lyra (Almeida
et al. 2014), which also introduced improvements such as: the decoupling of the memory
and processing parameters, giving further flexibility to users; the usage of a single under-
lying function (a cryptographic sponge) rather than the two employed in scrypt; higher
resistance against attacks exploiting time-memory trade-offs; and higher performance,
allowing for a higher memory usage with a similar processing time.

Over the last years, some candidates submitted to the Password Hashing Compe-
tition (namely, Argon2, Catena, and yescrypt, besides Lyra2 itself, to cite only algorithms
deemed as recommended) also allow memory and processing time to be configured, and
some of them (especially Catena, Argon2 and Lyra2) try to provide a thorough security
analysis. Due to space limitations, we do not analyze each solution in this document, lim-
iting the discussion to the comparative performance and security assessment in Sections
5.1 and 5.2. Nevertheless, we refer the interested reader to (Almeida et al. 2014) for a
discussion on scrypt and improvements proposed in Lyra (and inherited by Lyra2), and to
the PHC official website (PHC 2013) for details on each submission.
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5. Lyra2

As any PHS, Lyra2 takes as input a salt and a password to create a pseudorandom output.
Internally, its memory is organized as a two-dimensional array whose cells are iteratively
read and written, called simply the memory matrix. Hence, discarding a cell for saving
memory leads to the need of recomputing it, until the point it was last modified, whenever
it is accessed again. The matrix’s initialization and visitation uses a stateful combination
of the underlying sponge’s absorbing, squeezing and duplexing operations, and was de-
signed specifically to avoid password cracking using commom attack platforms such as
GPUs and dedicated hardware. Also, users can define the matrix’s size and the number
of times its cells are revisited after initialization, allowing Lyra2’s resource usage to be
fine-tuned. Due to space limitations, here we limit the discussion of Lyra2’s design to
this brief overview, whereas the detailed design, some possible variants, as well as an
extended security and performance analysis can be found at Lyra2’s reference guide and
PhD thesis — both available at www. 1yra2.net —, and published papers (Andrade et al.
2016; Andrade and Simplicio Jr 2016).

5.1. Security

Table 1 summarizes the Lyra2’s security analysis, providing a comparison with other
Password Hashing Schemes that are considered part of the state of the art. We note that,
among the results appearing in this table, only the data related to Lyra2 were actually
analyzed and presented in our thesis, while the rest of the data shown were collected
on the reference guides, manuals and articles describing and/or analyzing the other so-
lutions, including also third-party analysis. Hence, we refer the interested reader to the
original sources for details: Argon2 (Biryukov et al. 2016), battcrypt (Thomas 2014),
Catena(Forler et al. 2013), Pomelo (Wu 2015), yescrypt (Peslyak 2015), scrypt (Per-
cival 2009), and garbage collector attacks (Forler et al. 2014). As can be seen in this

'Provides protection when in its “read-write” mode (YESCRYPT_RW) (Forler et al. 2014).

Table 1. Security overview of the PHSs considered the state of art. In the TMTO analysis,

the time parameter is denoted by 7" and the memory is denoted by R.
Aloorithm Time-Memory trade-offs Slow Side Hardware | Garbage
g (TMTO) Memory | Channel | and GPUs | Collector
. for R =R/6
Argon2i ~ 9155 T-/R — v 4 /
forR' =R/6
Argon2d ~ 2196 T-/R v X v v
battcrypt — X v v
o1
Catena G)(R(Tll) — 4 v v
o(1
Lyra o R(Tle) v X v v
for R =R/2""%, where n > 0
Lyra2 ’ = !
yra2 [ours] O(QPTR>) for n > 1 v v 4
POMELO — v ! v v
yescrypt o(1) v X v e
O(RT+1 )
o(1)
t !
Scryp O(R?) v X X
V- Has protection; X- Has no protection; ! - Partial protection; — - Nothing declared.
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table, Lyra?2 is the only solution that provides at least partial protection against all known
attacks.

5.2. Benchmarks

In our assessment of Lyra2’s performance, we used an SSE-enabled implementation of
Blake2b’s (Aumasson et al. 2013) and BlaMka’s (Andrade 2016, Sec. 4.4.1) compres-
sion function as the underlying sponge’s f function of Lyra2’s Algorithm. The actual
implementations, as well as test vectors, are available at www. lyra2.net. Figure 1 shows
the results for Lyra2 using Blake2b’s as compression function, with C = 256, p = 1, and
different 7 and R settings. As depicted, Lyra2 is able to execute in: less than 1 s when us-
ing up to 400 MB (with R = 2'* and T = 5) or up to 1 GB of memory (with R ~4.2-10*
and T = 1); or in less than 5 s with 1.6 GB (with R = 2'® and T = 6). The testbed
employed is an Intel Xeon E5-2430 (2.20 GHz, W = 64 bits) equipped with 48 GB of
DRAM, running Ubuntu 14.04 LTS 64 bits. The source code was compiled using gcc and
g++4.9.2.

battcrypt (T=0)
«POMELO (T=0)
Catena (T=1)
=scrypt
<~ Lyra2 (T=6)
- Lyra2 (T=5)
* Lyra2 (T=4)
% Lyra2 (T=3)
= Lyra2 (T=2)
+yescrypt (T=0)
=Argon2-id (T=1)
= Lyra2 (T=1)

Processing time (s)

0 200 400 600 800 1000 1200 1400 1600
Memory usage (MB)

Figure 1. Performance of SSE-enabled Lyra2, for C = 256, p = 1, p = 1, and different T
and R settings, compared with SSE-enabled scrypt and memory-hard PHC finalists with
minimum parameters.

The same Figure 1 also compares Lyra2 with scrypt’s SSE-enabled implemen-
tation available at www.tarsnap.com/scrypt.html, using the parameters suggested by
scrypt’s author in (Percival 2009) (namely, b = 8192 and p = 1). We also performed tests
aiming to compare the performance of Lyra2 and the other 5 memory-hard PHC finalists:
Argon2, battcrypt, Catena, POMELO, and yescrypt; in the absence of a complete set of
optimized implementations for gathering such data, a reasonable approach is to consider
the minimum parameters suggested by the authors of each scheme. The results, which
basically confirm existing analysis done in (Broz 2014) and show that Lyra2 is a very
competitive solution in terms of performance, are depicted in Figure 1.

5.3. Expected attack costs

Considering that the cost of DDR3 SO-DIMM memory chips is currently around
U$8.6/GB (TrendForce 2015), Table 2 shows the cost added by Lyra2 with T = 1 and
T =5 when an attacker tries to crack a password in 1 year using the above reference
hardware, for different password strengths; we refer the reader to (NIST 2011, Appendix
A) for a discussion on how to compute the approximate entropy of passwords, and to (Per-
cival 2009) for a more detailed description on how to obtain such cost estimates. Notice
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Table 2. Memory-related cost (in U$) added by the SSE-enable version of Lyra2 with 77 = 1
and T =5, for attackers trying to break passwords in a 1-year period using an Intel Xeon
E5-2430 or equivalent processor.

Password Memory usage (MB) for 7 = 1 Memory usage (MB) for T =5
entropy (bits) 200 400 800 1,600 200 400 800 1,600
35 315.1 1.3k 5.0k 20.1k 917.8 3.7k 147k | 59.1k
40 10.1k | 40.2k | 160.7k | 6429k | 29.4k | 117.7k | 471.9k | 1.9M
45 3227k | 1.3M | 5.1M | 20.6M | 939.8k | 3.8M 15.1M | 60.5M
50 10.3M | 41.2M | 164.5M | 658.3M | 30.1M | 120.6M | 483.2M | 1.9B
55 3304M | 1.3B 5.3B 21.1B | 9624M | 39B 15.5B | 62.0B

Where: k (kilo) = x1,000; M (Million) = x1,000,000; B (Billion) = x 1,000, 000,000.

that, in a real scenario, attackers would also have to consider costs related to wiring and
energy consumption of memory chips, besides the cost of the processing cores.

6. Final Considerations

In this document, we presented the main aspects of Lyra2, a password hashing scheme
(PHS) that allows legitimate users to fine tune memory and processing costs according to
the desired level of security and resources available in the target user platform. To this end,
Lyra2 builds on the properties of sponge functions operating in a stateful mode, creating a
strictly sequential process. Indeed, the whole memory matrix of the algorithm can be seen
as a huge state, which changes together with the sponge’s internal state. In summary, the
combination of a strictly sequential design for thwarting attacks with parallel platforms
(e.g. GPUs or ASICs), the high costs of exploring time-memory trade-offs, and the ability
to raise the memory usage beyond what is attainable with similar-purpose solutions (e.g.,
scrypt) for a similar security level and processing time make Lyra2 an appealing PHS
solution.

6.1. Publications and other results

The following adoptions, publications, presentations, submissions and envisioned papers
are a direct or indirect result of the research effort carried out during this thesis:

* PHC special recognition: Lyra2 received a special recognition for its elegant
sponge-based design, and alternative approach to side-channel resistance com-
bined with resistance to slow-memory attacks (PHC 2015).

* BlaMka’s adoption: the winner of the PHC, Argon2, adopts BlaMka by default as
its permutation function (Biryukov et al. 2016).

» Lyra2’s adoptions: the Vertcoin electronic currency announced that it is migrat-
ing from scrypt to Lyra2 due to the excellent performance against custom mining
hardware, as well as to the latter’s ability to fine tune memory usage and process-
ing time Lyra2 (a432511 2014; Day 2014). Furthermore, a few months ago one of
the major bitcoin mining software on GPU, the Sgminer, added support to Lyra2
in its distribution package (Crypto Mining 2015).

* Journal Articles: in (Almeida et al. 2014), we present the Lyra algorithm, de-
scribing the preliminary ideas that gave rise to Lyra2; in (Andrade et al. 2016),
we describe Lyra2 and provide a brief security and performance analysis of the
algorithm.
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» Extended abstract: in (Andrade and Simplicio Jr 2014b), we present the initial
ideas and results of Lyra2, and took the opportunity of the event to discuss these
results with other graduate students from the graduate program of Electrical En-
gineering (Computer Engineering area) at Escola Politecnica; in (Andrade and
Simplicio Jr 2014a), we gave an oral presentation at LatinCrypt’14 with some
preliminary results; and in (Andrade and Simplicio Jr 2016) we present the cur-
rent status of our project.

* Award: recently, we received a best PhD project award due Lyra2’s design and
analysis (Andrade and Simplicio Jr 2016; ICISSP 2016).

6.2. Future works

As future work, we plan to provide a more detailed performance and security analysis
of Lyra2 with different underlying sponges and in different platforms. Among those
sponges, in especial we intend to evaluate multiplication-hardened solutions, including
BlaMka, since this kind of solutions would increase the protections against attacks per-
formed with dedicated hardware.

Another interesting subject of research involves adapting Lyra2’s design to allow
parallel tasks during the password hashing process. Finally, we can also evaluate the
consequences to adopt a password independent approach on the Lyra2 structure, aiming
make it totally resistant against cache-timing attacks.
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