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Abstract. The growing importance of Internet of Things (IoT) calls for tools
able to provide users with secure systems. Traditional approaches to analyze
distributed systems are not expressive enough to address this challenge. As a
solution, we present a framework to analyze networked embedded systems. Our
key insight is to look at a distributed system as a single body, and not as separate
programs that exchange messages. We then can crosscheck information inferred
from different nodes. To construct this global view of a distributed system, we
introduce a novel algorithm that discovers inter-program links efficiently. Such
links lets us build an inter-program view, a knowledge that we can thus forward
to a traditional static analysis tool. We prove that our algorithm always ter-
minates and that it correctly models the semantics of a distributed system. We
have implemented our solution on top of the LLVM compiler, and have used it
to secure six ContikiOS applications against buffer overflow attacks. Our solu-
tion produces code that is as safe as code secured by more traditional analyses;
however, our binaries are on average 18% more energy-efficient.

1. Introduction

The emergence of the Internet of Things (IoT) has increased importance of Networked
Embedded Systems (NES) [Borgia 2014]. In fact, more than ever, the everyday person
and “things” are surrounded by NES in a most varied set of devices, which perform a very
diverse list of services. However, programming these systems is more challenging, due,
not only to their shear volume, but also to this diversity. Above all, software embedded in
appliances, cars and sensors scattered throughout cities, running in hardware of different
capacities, and subject to very different natural conditions.

IoT faces a plethora of security problems [Heer et al. 2011]. It suffers from the
same security issues as traditional Internet-based and/or wireless systems. In addition,
it is more prone to other issues such as out-of-bound memory accesses due to a few
factors: IoT costs must be kept as low as possible, and to meet this requirement, they are
usually endowed with the least amount of resources necessary to accomplish their duties.
Accordingly, applications for IoT are commonly developed using lightweight languages
such as C, an inherently unsafe language [Chess and West 2007]. Its semantics allows
out-of-bound memory accesses. This type of accesses are dangerous because they give
room to Buffer Overflow (BOF) attacks. A BOF takes place whenever a system allows
data to be accessed out of the bounds of an array.

Much work has already been done to turn C into a safer language (e.g. SAFE-
Code [Dhurjati et al. 1996] and AddressSanitizer (ASan) [Serebryany et al. 2012]). Ex-
isting proposals resort to Array-Bound Checks (ABC), which are tests done at runtime to
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ensure that a particular array access is safe. These proposals work in a two-pass fashion.
They first scan programs’ assembly representation to find code snippets containing vul-
nerabilities; in a second step, they return to the potential vulnerabilities and insert ABCs.
While effective in preventing out-out-bound memory accesses from taking place, these
proposals impose a significant overhead on compiled programs, and are thus inadequate
as-is to IoT. As an example, ASan is known to slowdown programs by over 70%, and to
increase their memory consumption by over 200%. It is therefore paramount to develop
more efficient techniques that can be used to protect [oT.

The goal of this work is to describe a general framework for analysis and opti-
mization of distributed systems, which we can use to implement an efficient solution to
counter buffer-overflow attacks in [oT. Our key insight is to look at a distributed system
as a single entity, rather than as multiple separate message-exchanging programs. Using
a novel algorithm, we can infer the communication links between different programs that
converse through a network. This knowledge lets us model how data flows across dis-
tributed programs; hence, it gives us a holistic view of the entire system. Such a view can
be coupled with traditional static analysis tools to improve their precision.

To validate our claims, we have used our framework to protect IoT systems against
BOF attacks. We call our solution Securing Internet of Things (SIoT). More specifically,
we applied Tainted Flow Analysis (TFA) [Balzarotti et al. 2008] on the model we pro-
posed, and sanitized C programs against out-of-bound memory accesses. TFA tracks
potentially malicious data (i.e., data that can be influenced by attackers) flows across the
program. Memory indexed by tainted data can then be guarded against invalid access
during runtime using ABC. Because the analysis has a holistic view of the entire system,
it produces a smaller number of false-positives than if each module of the system were
analyzed individually. This extra precision yields a smaller runtime overhead. Notice that
this framework is general enough to support a wider range of analysis. The solution for
out-of-bound memory accesses presented in this work is just an instance of it.

Our contribution. This work brings forth both theoretical and practical contributions.

On the theoretical side, we propose a way to model distributed systems as single
entities. More specifically: 1. We propose an extension to the standard Control Flow
Graph (CFG) [Allen 1970], called Distributed Control Flow Graph (DCFG), expressive
enough to model the control flow spanning multiple programs that communicate over a
network.; 2. We propose an algorithm that infers communication links between different
programs from a distributed system, and prove that the algorithm (i) never misses possible
communication paths between programs; and (i1) always reaches a fixed point, and hence
always terminates.

On the practical side, we have implemented our algorithm, and showed that it can
protect IoT against BOF, and can do so more efficiently than traditional approaches. More
specifically: 1. We have implemented our algorithm and its companion distributed TFA
in the LLVM compiler [Lattner and Adve 2004]. 2. We have applied this analysis on six
applications present in ContikiOS [Dunkels et al. 2004], and the results show that our
proposal is 18% more energy-efficient than existing solutions.

Publications. The problem and first idea of solution was published as part of an SB-
Seg13 tutorial. Then, a first version of the SIoT with preliminary results was published
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in SBRC14. An extension of this work was published at Latin American Transactions. In
2015, a complete version of SIoT was published at the IPSN [Teixeira et al. 2015]!. The
list of these publications can be seen below:

e Seguranca de Software em Sistemas Embarcados: Ataques & Defesas. SBSeg’2013.

e Defending Code from the Internet of Things against Buffer Overflow. SBRC’2014.

e Defending Internet of Things against Exploits. IEEE Latin America Transactions, 2015.
e SloT: Securing the Internet of Things through Distributed System Analysis. IPSN’2015.

From our work was derived two undergraduate projects and one master degree
dissertation. The undergraduate projects have finished in 2014. The master dissertation
uses our framework to create a Distributed Range Analysis. It was conclude in 2015 and
was published at SBSeg14 and at Latin American Transactions 2015.

2. Language-Based Techniques for Addressing BOF Vulnerabilities

Software code can harbor different types of security vulnerabilities, and those susceptible
to BOF attacks are the most exploited. Solutions to address this class of vulnerabili-
ties have long existed, and are largely based on static analysis [Chess and West 2007],
dynamic analysis [Serebryany et al. 2012], or a combination of both. In static analy-
sis, analysis is performed without actually running the program; instead either the source
code or the object code is inspected, and vulnerabilities flagged. Dynamic analysis, on the
other hand, is performed during system executions, and takes advantage of information
that is available only at runtime. Armed with runtime information, it is then able to accu-
rately flag problems in actual runs of the system. Due to their complementary nature, it
is common to use hybrid analysis, i.e., the combination of static and dynamic techniques.
Usually, static analysis is used first, to identify potential vulnerabilities; the vulnerable
stretches are then instrumented and monitored at runtime by dynamic analysis.

Code Analysis using CFG. The CFG is used to model the control flow of computer
programs (Fig. 1). The CFG of a program P is a directed graph defined as follows. For
each instruction ¢ € P, we create a vertex v;; we add an edge from v; to v; if it is possible
to execute instruction j immediately after instruction 7. There are two additional vertices,
start and exit, representing the start and the end of control flow.

One class of potential BOF vulnerabilities we might be interested in flagging is
variables assignments where the data being assigned are originated externally from user
or environment input. If we assume that neither the data sent over the network, nor the
executable of the various distributed modules can be tampered with (see Section 3 for
a discussion of these assumptions), then we would see the assignments in lines 1 and
5 (Fig. 1b) differently. Even though they both involve data coming from the network
(through the recv function), we would deem the one in line 5 as vulnerable, but not the
one in line 1. The assignment in line 5 is vulnerable because the data being assigned
to msg comes from getc (line 4, Fig. 1a), which could provide malicious data from
attackers (msg has been used in buffer access). The first assignment in server program
(line 1, Fig. 1b) is not vulnerable because the data being assigned is a hard-coded constant
from the client program (line 1, Fig. 1a).

'TPSN is a flagship conference on networked embedded systems — http://ipsn.acm.org/
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(a) 1 send(1l); (b) 1 msg = reev();
2 ack = reev() 2 if (msg == 1) {
3 if (ack == 1) { 3 send(1);
4 s = getc(); 4 do {
5 while (s != '\0') { 5 msg = recv();
6 send(s) 6 putc(msg) ;
7 ack = recv(); 7 if (msg != '\0")
8 if (ack != 1) { 8 send(1);
9 break; 9 else
10 } else { 10 break;
11 s = getc(); 11 } while (1);
12 } 12 } else {
13 } 13 send(0);
14 send(s); 4}
15y

._>| A: send(1) |—>| B: ack = reev() | .—>| F: msg = reev() |—r| (msg == 1)? |

[ 1 mse—rees0 [ & sena) |

| s = getc() |<—| (ack ==1)?
|

O putc(msg) | | J: send(0) |
C: send(s) I
s = getc() l E: send(s)

Figure 1. Echo application’s programs and their respective CFGs. (a) Echo client.
(b) Echo server.

(msg 1="0"?

I: send(1)

In their standard form, CFGs are unable to model the overall control flow of pro-
grams that span multiple distributed processes. Thus, they do not provide support to dis-
tinguish the two assignments mentioned above. To be safe, both assignments are usually
flagged as vulnerable, yielding one true-positive (line 5, Fig. 1b) and one false-positive
(line 1, Fig. 1b). Our proposal addresses this shortcoming (Section 4).

3. System Assumptions & Attack Model

For the purpose of this work, we assume networks of distributed and embedded nodes,
organized as IoT systems. Each node can interact with its environment through sensors,
actuators, or user interfaces. We assume that both the system running at each node and the
communication between different nodes is protected against tampering. Different security
mechanisms can be used to implement such protections. For example, Trusted Platform
Module (TPM) [Kinney 2006] can be employed to ensure the integrity of nodes systems
and cryptographic solutions like [Perrig et al. 2002, Kothmayr et al. 2011] can be used to
establish a secure communication channel.

Attackers have control over the input data that the nodes receive from its envi-
ronment. This includes data captured by the sensors or input from the user interfaces,
but excludes data coming from network interfaces (we assume a secure communication
channel). Though limited in the type of attacks they can launch, such attackers can poten-
tially cause security problems if the code running on the nodes harbors certain types of
vulnerabilities. For example, if the code does not check array bounds, certain inputs may
cause BOF. Attackers can then manipulate the environment (to produce spurious sensor
readings) or provide spurious user input to launch a BOF attack, leading the nodes to de-
nial of service or malicious behavior. Because these nodes are connected to the Internet,
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misbehaving nodes can be used as a proxy to attack other nodes in the network. Note
that malicious input injection attacks can be most effectively exploited if the attacker has
information of vulnerabilities in the code. This information is readily available in case
of open source programs, and can also be obtained from code reverse engineering, and
program fuzzing exercises.

4. Communication Links Inference

CFGs model the control flow of individual programs. To analyze an entire distributed
system, we need to work with CFGs that transcend program boundaries. We propose the
notion of DCFG for this purpose, and describe how they are built below. Each DCFG
models the communication between two programs in a system. If the system contains
more than two programs, a DCFG is necessary to model the relationship between each
pair of them. Let {C;,C,} be a pair of CFGs that constitute a system and D the resulting
DCFG. D contains ' and (), as a subgraph. Inter-program edges connecting C'; and Cs
are then added to D: for each pair of senp and REcv vertices (each from the two different
CFGs) that may communicate, we add an edge from the former to the latter. That is, for
each pair of vertices s; € C; and r; € Co, if there is an execution sequence in which a
message issued by s; reaches r;, we add to D an inter-program edge from s; to r;. And,
for each pair of vertices s, € C, and r; € Cy, if there is an execution sequence in which a
message issued by sy reaches r;, we add to D an inter-program edge from sy, to ry.

In principle, we can add inter-program edges linking every send vertex in one of
the CFGs to every receive vertex in the other CFG in the system. However, the resulting
DCFG would have inter-program edges linking sends and receives that could not be the
matching ends of a communication. For instance, in Fig. 1, sends from vertex A are not
received by vertex H; every send from A will be received by F before H has a chance to
execute. To define a DCFG that better model the workings of a system, we introduce the
notions of Send-Graph, Receive-Graph, and levels.

Given a CFG C of a program, we define its associated Send-Graph S and Receive-
Graph R as follows. For each vertex v € C labeled with a send operation, we add a vertex
v’ to S. We also add start’ and exit’ vertices, which correspond to start and exit in C.
Edges in S correspond to paths between sends in the original C. For every pair of vertices

u,v € C, we add an edge u'v’ to S if, and only if: (i) there exists a path p from u to v in C,
and (ii) p does not contain any other sends. We create R in a similar way, replacing sends
by recvs in the procedure described above.

Next, we move on to the concept of level. Given a Send-Graph, its level 0 contains
the start vertex. Level 1 contains the sends that are reachable, in one step, from the root.
More generally, level n + 1 contains the immediate successors of vertices in level n. The
procedure is complete when the vertices in the just-generated level do not have successors,
or the just-generated level is a duplicate of a previously existing one. The concept of level
can be similarly defined for Receive-Graphs. We show an example in Fig. 2. Consider
echo client program Send-Graph (Fig. 2 left-hand-side). Its level 1 contains the immediate
successors of root node, i.e., { A}. Its level 2 contains the immediate successors of each
send node of level 1, i.e., {C, E'}. The successors of C'is {C, E'}, and E does not have
successors. We find ourselves in a cycle, and the traversal can now stop. The levels for
echo server Receive-Graph can be similarly determined.
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level of Senders: . _ ® level of Receivers:
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Figure 2. Levels for echo client’s SENDs (left-hand-side) and echo server’s RECVs
(right-hand-side).

Algorithm 1: Elevator

Input: CFGs {C1,C2}, Send-Graphs {S1, S2} and Receive-Graphs {R1, R2}.
Output: a DCFG D

> Set the SEND and RECV levels
foreach G; € {S1,S2} U{R1,R2} do
n<+ 0
Lg,; n < {root}
> While the new generated set Lg,, is unique
while LGi,n #* LGi,Q_,n_l do
foreach vertex v in Lg, ,, do
Ssuces < successors of v
LGi,n+1 — LGi,n+1 U Ssuces
n<—n+1

> Link SENDs and RECVs of the same level
D+ C; UCo
for k < 1ton do
foreach vs € Ls, x and v, € Ly, i do
add an edge from v to v, in D
foreach vs € Ls, r and v, € Lr, x do
add an edge from vs to vy in D

Given the CFGs in Fig. 1, their resulting DCFG can be built by linking the SEND
vertices in one CFG with the Recv vertices of the same level in the other. Links are es-
tablished between Senps and ReCvs that have the same level because they model matching
ends of message exchanges. The steps describe above are captured in the Elevator Al-
gorithm (Algorithm 1). (See Section 3.4, in the Thesis, for formalization of Elevator
algorithm, with a prove of its correctness and termination.)

5. Evaluation

The holistic program view that SIoT gives to a static analysis lets it consider network
channels as links between modules instead of input operations. Therefore, all the ABCs
that depend exclusively on the network and do not reach user inputs can be eliminated.
The end result of this extra precision is more efficient executable code. To validate this
claim, we have used SIoT to improve the code that ASan generates. To give the reader
some perspective on our results, we compare SIoT to a hypothetical traditional tainted
flow analysis, i.e., a technique that treats distributed system separate programs, and not as
a single entity. Henceforth, we refer to this technique as Baseline.

We perform the experiments into six pairs of ContikiOS applications (Table 1).
For each of these pairs, we compare the number of ABCs that ASan inserts without
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Table 1. ABCs inserted by ASan, Baseline, and SloT.

.. Memory ABCs inserted % ABCs Reduction
Applications Arrays

Accesses ) SIoT vs  SIoT vs

ASan Baseline SIoT .

ASan Baseline

netdb client/server 6,181 22,819 4,641 172 16 99.66%  90.70%

ping6 / new-ipv6 4,683 16,871 7,453 166 14 99.81% 91.57%

ipvo-rpl-collect udp-sender/sink 4,786 17,301 3,831 168 14 99.63% 91.67%

ipv6-rpl-udp client/server 4,760 17,162 3,787 170 14 99.63%  91.76%

udp-ipv6 client/server 4,701 16,945 3,736 212 14 99.63%  93.40%

coap-client / rest-server 5,195 18,693 4,032 214 14 99.65%  93.46%

Table 2. Energy consumption for the unprotected (Plain) and protected (SloT and
Baseline) versions of applications. Cl: Confidence Interval.

Application Plain SloT Baseline
Energy (J) CI Energy (J) CI Energy (J) CI
netdb client 1.941 0.025 2452 0.014 2486 0.011
ping6 0.109  0.001 0.111 0.001 0.151 0.002
ipv6-rpl-collect udp-sender 2277 0.043 2.286 0.043 2.996 0.029
ipv6-rpl-udp udp-client 3.062 0.029 3.076  0.016 3.127 0.005
udp-ipv6 client 3.842  0.019 3.860 0.011 3.958 0.029
coap-client / rest-server 4.856 0.020 4861 0.037 5.034  0.041

any optimization against the number of ABCs that the Baseline and the SIoT-based ap-
proaches insert. This table shows that ASan introduces between 3,736 ABCs (udp-ipv6
client/server) and 7,453 ABCs (ping6 / new-ipv6). The Baseline approach reduces ASan’s
numbers substantially, between 170 (ipv6-rpl-udp client/server) and 214 (rest-server/coap-
client), because it is eliminating every guard that is not influenced by data coming from
an external function. SIoT can further reduce this number one order of magnitude more.
In this case, contrary to what is done by the Baseline approach, network functions are no
longer marked as dangerous, unless they read data that comes from genuine inputs. We
conclude from these experiments that the automatic inference of links between distributed
programs improves the precision of static analyses tools in non-trivial ways.

On Energy Saving. Each ABC that we eliminate represents a small saving in terms
of energy consumption. To back up this observation with actual data, we performed an
experiment with six ContikiOS applications. We tested three versions of each application:
(i) without ABCs; (ii) with the ABCs inserted by the Baseline; and (iii) with the ABCs
inserted by SIoT. To carry on this experiment, we have installed the applications in IRIS
XM2110 sensors and have measured the amount of energy that they consume. Our results
(Table 2) show that SIoT outperforms Baseline for all applications. On average SIoT is
18% more energy efficient than Baseline.

6. Conclusion

This work has presented a framework for analysis and optimization of distributed system,
which we have used to protect IoT systems against BOF attacks. Our framework provides
typical static analyses with a holistic view of a distributed system. This view improves
the precision of such analyses. To validate this claim, we have created SIoT to instantiate
a version of TFA that points out which memory accesses need to be guarded against BOF
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attacks. Our experiments have demonstrated that our approach is effective and useful
to make programs running over a network safer. As future work, we plan to use our
framework to enable other kinds of program analyses. In particular, we are interested in
using it to secure programs against errors caused by integer overflows. We also want to
use our framework to enable compiler optimizations. As an example, if we go back to
Figure 1, we see that the conditional test at line 2 of our server is unnecessary. Such an
observation requires SIoT’s global view of a distributed system.

Thesis Links. The Thesis text is publicly available at hitp://homepages.dcc.ufmg.br/~teixeira/
teixeira-thesis.pdf. The SIoT code is publicly available at http://cuda.dcc.ufmg.br/siot/.
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