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Abstract. Recent Distributed Denial of Service (DDoS) attacks have been car-
ried out over the application layer where an attacker can target a particular ap-
plication of the server while leaving the others applications still available, thus
generating less traffic and being harder to detected. This work proposes a novel
defense called SeVen which uses Selective Strategies to mitigate such attacks.
We validate SeVen by: (1) Simulation: The entire defense mechanism was for-
malized in Maude and simulated using the statistical model checker (PVeStA).
2) Experiments: Analysis of efficiency SeVen, implemented in C++, in a real ex-
periment on the network showing that SeVen is effective in mitigating the HTTP
POST and Slowloris attacks yielding high levels of availability.

1. INTRODUCTION

Denial of Service Attacks (DDoS) have always been a major concern to network admin-
istrators. Traditionally, DDoS attacks are carried out on the transport layer by sending a
number of packets to a server much greater than the server’s processing capabilities mak-
ing it unavailable to legitimate users. Although still dangerous, such attacks can be identi-
fied by using traffic analysis tools and mitigated by existing defenses [Zargar et al. 2013],
such as the Adaptive Selective Defense [Khanna et al. 2008, Khanna et al. 2012].

In the recent years, a new generation of sophisticated attacks has emerged that
exploit application layer protocols, such as HTTP and SIP protocols. Application Layer
DDoS attacks (ADDoS) can target a single application in the server, e.g., a web-server, in-
stead of the whole server machine. The attack does not need to generate a huge amount of
traffic, thus rendering existing defenses ineffective [Zargar et al. 2013]. Moreover, since
the traffic generated by the attack is similar to legitimate traffic, it is hard to distinguish
when a request is part of an attack or it is a legitimate request. These attacks are becoming
increasingly preferred by attackers. In 2015, DDoS exploiting the HTTP protocol repre-
sented more than 30% of the total DDoS attacks just behind the traditional SYN-ACK
DDoS with above 50% of all DDoS attacks (https://tinyurl.com/qg9p7qfz).

Contributions: We formalize three different ADDoS attacks in the the computational
tool Maude [Clavel et al. 2007], namely HTTP GET flooding, HTTP POST and Slowloris
attacks (described in Section 2). We propose (Section 3) a novel defense against ADDoS
attacks, called SeVen, based on ASV [Khanna et al. 2008]. As ASV was designed for
mitigating transport layer DDoS attacks, it assumes that communication is a simple client-
server stateless sync-ack interaction. This is, however, not enough for mitigating ADDoS
attacks, as the protocols used by these attacks, such as HTTP, have a notion of state. SeVen
thus extends ASV by incorporating into the defense a notion of state needed for mitigating
ADDoS attacks, such as the HTTP POST and Slowloris attacks; We formalize SeVen in
Maude [Clavel et al. 2007] and validate (Section 4) our defense by simulation using the
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Figure 1. Behavior of three Application Layer DDoS Attacks.

statistical model checker tool PVeStA [AlTurki and Meseguer 2011]. We implement a
tool for SeVen in C++. We carry out experiments on the network by realizing attacks on
a Apache web-server using two different scenarios, i.e., with and without running SeVen.
In each experiment, we measure the Success Rate of clients and their Time of Response
(TTS). For all attacks, we observe great improvements on the Success Rate and TTS.
Finally we briefly discuss the outcome of this work (Section 5).

2. ATTACK DESCRIPTIONS
HT GET Flooding  Attack Flooding attacks [Zargar et al. 2013,

Shankem et al. 2009] are very similar to transport layer DDoS attacks in that the
attacker and his zombies send a great number of packages. However, instead of
consuming the resources of a whole server as in network layer DDoS, the target is an
application running on the server, such as a web-server. When the attack is carried
out, the application is overwhelmed and is no longer available to honest clients. The
attack pattern is as shown in Figure 1(a), where the attacker establishes a connection
by completing the SYN-ACK handshake with the target web-server. At this time, the
attacker sends a great number of packages in order to overload such a web-server.

Slowloris Attack The Slowloris attack [slowloris 2013] exploits the HTTP GET
method, used to retrieve web content. The attack follows by using the sequence of mes-
sages shown in Figure 1(b). The attacker completes the SYN-ACK handshake with the
target web-server thus establishing a connection with the web-server machine exactly as
a legitimate client would do. Then the attacker sends an incomplete header with a GET
request. At this moment the web-server allocates one of its workers to handle this in-
coming request. However, since the request header is not yet complete, the web-server
waits, as specified by the HTTP protocol version 1.1 [RFC 1999], until a new piece of the
request header is received. If such a piece is not received until a given timeout elapses,
the web-server rejects this request. The attacker can easily infer, beforehand, this time-
out by measuring the time until a request with an incomplete header is rejected. Thus,
once the timeout is almost reached, the attacker sends another piece of the header, which
can be anything actually as long as it does not complete the header of the request. The
tool implemented by Anonymous sends “x-1:aa”. This causes the web-server to reset the
timeout count and wait once again for another piece of the header.

HTTP POST Attack The HTTP POST attack [r-u-dead yet 2013] exploits the POST
method from the HTTP protocol. It works on web-pages that have some type of form to
be filled. Figure 1(c) depicts the sequence of messages used in the HTTP POST attack.
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The attacker establishes a connection by completing the SYN-ACK handshake with the
web-server’s machine. At this point, the attacker sends a (complete) HTTP POST request
informing that it will send a large number, z, of bytes to the web-server corresponding
to the contents of some form. The web-server, then, allocates one of its workers to serve
this request. However, instead of sending big chunks of this data to the web-server as a
legitimate client would do, the attacker sends very small pieces, typically a single byte per
subsequent message. Moreover, it sends each piece in large intervals (typically 10s per
byte). In the meantime the allocated worker waits until it receives all = bytes and cannot
serve any other (legitimate) requests. By sending a number of POST requests greater than
the number of workers in the web-server, all workers are busy waiting for attacker requests
to be completed and therefore the web-server is not able to serve legitimate clients.
Slowloris attack and HTTP POST attacks do not generate high traffic load, nor
high CPU and memory consumption. Thus, it is easy for administrators (or automated
tool) monitoring these parameters to believe that their application is not under attack.

3. SEVEN

Our novel defense Selective Verification in Application Layer (SeVen as a reference to the
number of the Application Layer in the OSI model) is based on ASV [Khanna et al. 2008].
Instead of analysing the traffic pattern of a given attack, SeVen assumes that whenever
under attack the number of requests from the attacker is greater than that of honest users.
An application using SeVen does not immediately process incoming messages, but waits
for a period of time, tg, called a round. During a round, SeVen accumulates messages
received in a buffer. Depending on the size of this buffer, it may reject some requests.

More precisely, SeVen is composed of a natural number (PMod) and of two buffers,
P, R, represented by lists:

(P, R,PMod).

The buffer P contains the requests partially processed, and ‘R the requests are expected
to be received and be processed by the application. The natural number PMod is a counter,
also used in ASV, that is used to modify the probability distributions of when a request
should be kept as it will become clear below. At the beginning of a round PMod = 0. The
buffers P and R contain requests of the form (ip : socket,data), where ip : socket is
the requesting agent’s identifier represented by its IP and the socket it is using and data
is the data in the request, for example, the contents of a form. The following invariants
hold:
e We assume that two different requests in P (respectively, in R) have necessarily
different identifiers;
e (ip: socket,datay) € Riff (ip : socket,data;) € P, where data; and data,
are pieces of data;
e At the beginning of a round, for all (ip : socket,data) € R, data = 0, where 0
denotes the empty data.

The first invariant specifies that requests in a buffer corresponds to different agents, while
the second invariant specifies that all agents that are sending data during a round are
being processed by P. The third invariant specifies that at the beginning of a round, the
application has not received any further data to be processed. It also assumes an upper-
bound, k£, on the number of elements in P and in R. Intuitively, this bound specifies
the number of requests an application can process at any given time. For instance in a
web-sever, this bound is the number of sockets that it has to process requests.
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During a round, SeVen does not reject any incoming requests until £ requests has
arrived. However, under the assumption that the application can only handle k requests
at a time, if the buffer R has already k requests and yet another request, r;, arrives, then
SeVen needs to make a choice of which requests to keep in its buffers and which to drop:

e [t may decide to not keep the incoming request, 7;, which means that the requests
currently in the buffers are not affected;

e or it may decide to keep the incoming request, which means that one request in the
buffers should be replaced by the new request.

These choices are governed by probability distributions. At the end of a round, SeVen
processes the request that remain in ‘R.

3.1. Defense by Example

Instead of describing the algorithm in its complete detail, for which we refer to
[Dantas et al. 2014, Dantas 2015], we illustrate its behavior by means of an example. As-
sume that the upper-bound £ = 4. Assume that initially there are three requests to be
processed, where for simplicity we use natural numbers for data parameter of requests:

Po = [(ips : sockety, 10), (ip, : sockety, 5), (ips : sockets, 2)]

?

Ro = [(ip: : sockety,0), (ips : socketsy, 0), (ips : sockets, 0)]

This state specifies that the application has received partial data from three requets,
ips : sockety, ipy : sockety, ips : sockets, and it is waiting for more data to be re-
ceived. It waits for the time, tg, of a round to collect new incoming requests. Say that it
receives the request: (ip; : sockety, 5) from ip; : socket; with 5 pieces of data. The
application updates its R buffer to the following:

Po = [(ips : sockety, 10), (ip, : sockety, 5), (ips : sockets, 2)]
R1 = [(ip; : sockety, 5), (ips : socketsy, 0), (ips : sockets, 0)]

Notice that it does not immediately process this new request. It waits for the round to
finish. Say now that a new request arrives: (ip, : sockety, 7) with a fresh identifer
ips : socket,. Since the number of elements in P is less than £ = 4, it can safely
add this request to the buffers as follows, where @ is the concatenation operator:

P = Po@Q[(ips : sockety,0)] Ro = R1Q[(ips : sockety,7)]

That is, it has received 7 pieces of data from ip, : socket, but not processed any piece
of information.

Assume now that another request req, = (ips : sockets, 1) has arrived. Since
the number of elements in P is equal to £ = 4, then it must decide whether to process
req, or not. It first sets PMod := PMod + 1 and decides to keep regq, with probability

k

Prob= ——
k + PMod

Notice that the probability of accepting new incomming requests reduces progres-
sively once the buffer contains k£ elements. For more about this choice we refer
to [Khanna et al. 2008, Khanna et al. 2012, Dantas et al. 2014]. Say that after throw-
ing the coin, it accepts to process the request req,. It should now decide which one
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of the requests in P and ‘R it should drop, because it cannot process more than £ re-
quests by assumption. In this thesis, such a decision is done by an uniform probability,
however SeVen can be instantiate by different probability distributions, as you can see
in [Dantas 2015, Dantas et al. 2016, Lemos et al. 2016]. Say that it chooses to drop the
request with identification ip, : socket,, sending an appropriate message to the request-
ing agent. The resulting buffers are as follows where \ is the operator that removes an
element from a list:

Py = (Py \ {{ip2 : sockety, 5)})@[(ips : sockets, 0)]
Rs = (Ra\ {(ips : sockety, 0)})Q@[(ips : sockets, 1)]

Consider now the end of this round. The application processes the requests that survived
in R, e.g., the 5 pieces of data received for request identified ip; : socket; are processed,
that is, they are added to the initial 10 pieces. The resulting buffer P is:

P3; = (ips : sockety, 15), (ips : sockets, 2),
(ips : sockety, 7), (ips : sockets, 1)

The data component of the requests in R are all set to 0, as well as PMod.

Finally, the application checks which requests have been completed. Say that this
is the case for the request identified ip; : socket;, then it sends the appropriate web
application’ data to agent ip.

Intuition for the Effectiveness of Selective Strategies The strategy that we just de-
scribed above is not tailored to mitigate any particular attack. We are simply selecting
requests by using traffic rate which incoming requests to select and by random with uni-
form probability which requests to drop. It might seem puzzling that such a simple strat-
egy works, but we have two rational assumptions for that: 1) the goal of a Low-Rate
ADDoS attack is to occupy for long periods of time the workers of the web-server. 2)
once the application is at its maximum capacity, it is likely that it is under attack and it is
likely that there is larger number of attackers consuming the web-server’s resource than
legitimate clients. Thus although the requests to be dropped are selected at random, there
is a greater chance of selecting a request from an attacker.

4. SIMULATION AND EXPERIMENTAL RESULTS

This section describes our main simulation and experimental results. [Dantas 2015] con-
tains further details of the Maude formalization and C++ implementation of SeVen.

4.1. Simulation Results

In our simulations, we compare our results with a defense similar to the ones in the lit-
erature based on Traffic Analysis. At a glance, this defense keeps track of the request
that it received, in particular, the number of pieces of data and the ¢d. For example, if
two consecutive Slowloris requests, i.e., “x-1:aa”, are received by the application with the
same ¢d and the same number of pieces of data, the defense believes that it is an attack
and simply blocks subsequent requests from this ¢d. We call this simple defense as Traffic
Analysis Defense (TAD). As shown in [de Almeida 2013], TAD is capable of mitigating
Slowloris attacks generated by a small number of attackers. However, once there is a great
number of attackers, this simple defense mechanism does not have a good performance
any longer, as predicted by [Kumar and Selvakumar 2013]. For more details of such a
defense, we refer to [de Almeida 2013, Dantas et al. 2014, Dantas 2015].

For our simulations, we used the following scenarios:

482 ©2016 SBC — Soc. Bras. de Computagéo



XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

T T T T
SeVen - GET Flooding —e—

SeVen - Slowloris —e—
25 TAD - Slowloris —e— ; - !
SeVen - POST

SeVen - GET Flooding —8—

SeVen - Slowlorjs —e—
TAD - Slowloris —e—

SeVen - POST

Client Success Ratio (%)
3
T

Expected Average TTS (time units)

40 80 120 160 200 240 280 40 80 120 160 200 240 280
Number of Attackers Number of Attackers

(a) Client Success Ratio. (b) Average TTS
Figure 2. Simulations of Client Success Ratio and Average TTS where i = 12.

1. SeVen — GET FLOOD: we simulated an HTTP GET flooding attack when the target
application used our defense SeVen;

2. SeVen — Slowloris: we simulated an Slowloris attack when the target application
used our defense SeVen;

3. SeVen — POST: we simulated an HTTP POST attack when the target application
used our defense SeVen;

4. TAD — Slowloris: we simulated an HTTP Slowloris attack when the target applica-
tion used the defense TAD.

Figure 2 contains the results of the simulations we carried out using different num-
ber of attacker that we measure how many (of the 200) clients were successful in receiving
an acknowledgment from the target application stating that their request has been com-
pleted and how much time in average that it takes for a successful client to receive an
acknowledgment that his request was successfully processed by the application. Fig-
ure 2(a) depicts the evolution of Client Success Ratio when we increase the number of
attackers. For all three attacks, the performance of SeVen is similar. When there are 280
attackers, as opposed to 200 clients, the application running SeVen still can maintain a
high level of availability, namely superior to 70%. On the other hand, TAD has simi-
lar or even superior results when there is a small number of attackers, but then it falls
drastically with the increase of attackers. This is in conformance with the evaluation in
[Kumar and Selvakumar 2013] that filtering defenses do not perform well when there is a
great number of attackers.

Figure 2(b) depicts the average TTS when we vary the number of attackers. All
scenarios involving SeVen have a higher TTS than the scenario using TAD. This is ex-
pected, as SeVen only answers request when the round of ¢g elapses, while TAD answers
immediately. Moreover, as expected, there is an increase on the average TTS. In all sce-
narios involving SeVen the TTS doubles when we increase the number of attackers from 8
to 280, which seems reasonable. The same happens to the TTS when using TAD. Notice,
however, that when using TAD the number of clients that actually receive an acknowledg-
ment reduces considerably with the number of attackers, as depicted in Figure 2(a) and
the TTS is only computed using the Successful Clients. So despite TAD having a smaller
TTS, the number of clients that have their request completely processed is much less.

4.2. Experimental Results

We carried out a number of experiments on the network to check the robustness of SeVen
against Slowloris and HTTP POST attacks. In order to have a realistic DDoS attack, we
set both target application and SeVen in Vitéria-ES/BR and carried out the attack using
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Table 1. Result Summary
Without SeVen | With SeVen
Success Rate  TTS | Success Rate  TTS
No Attack  100.0%  0.01s | 100.0%  0.03s

POST 0.0% 00 | 97.25% 0.05s
oo |

Slowloris 0.0% 94.47% 0.06s

distributed machines from Jodo Pessoa-PB/BR. Moreover, we used a benchmark tool,
named Siege [Siege 2014], to generate legitimate client requests also from Jodo Pessoa.

We used an Apache web-server 2.4.7 running in a Ubuntu machine, which was
configured with 200 sockets, i.e., the maximum number of connections that the web-
server can process. The timeout for the web-server was set to 40 seconds. This means
that if a socket remains silent for longer than 40 seconds, then the request arrived at that
socket is dropped. We generated (using Siege) S0 clients each 5 seconds, which means
in average a rate of 10 clients per second. The goal is to keep 1/4 of the buffer occupied
by legitimate clients. For generating the Slowloris and HTTP POST attacks, we used
Slowloris [slowloris 2013] and Switchblade [SwitchBlade 2015] tools respectively. We
generated 250 attackers every 35 seconds, i.e., a rate of 7.14 attackers per second, which
is smaller that our client rate but enough for denying service to a small/medium size web-
server. It supports our claim that ADDoS do not need to generate a large amount of traffic
to deny a target service. Finally, we set SeVen as a proxy and the round time of SeVen
was set to 10 ms.

Table 1 summarizes the results on the Success Rate and TTS for when the web-
server is not under an attack, and for the Slowloris and HTTP POST attacks for the sce-
narios when using SeVen and without SeVen. We observe that the web-server maintains
great levels of availability when using SeVen for both attacks. On the other hand, when
SeVen is not running the web-server is not able to respond any requests from legitimate
clients. In addition, we also measured the slight overhead added by SeVen working as a
proxy, which in our experiments was 0.02 seconds.

Our experiments demonstrate that SeVen is indeed effective for mitigating
Slowloris and HTTP POST attacks as already showed in our simulations using formal
methods. This indicate that formal methods is a suitable tool for specifying defense for
mitigating Distributed Denial of Services attacks allowing to increase our confidence on
the proposed defense before actual implementation.

5. Conclusions and Future Work

The outcomes of the Thesis We consider the outcome of the whole project a success.
At the time this paper was written, we have three published papers [Dantas et al. 2014,
Dantas et al. 2016, Lemos et al. 2016], two concluded bachelor theses and two ongoing
master theses on the topic. Due to such a success, we also have a solid ongoing project
funded by RNP (www.rnp.br) in which we are currently deploying SeVen to protect the
web-services of different educational institutions. In addition, we are also investigating
how SeVen can be incorporated into existing services such as those used by Fone @RNP.

We propose a novel defense for Application Layer DDoS attacks (ADDoS), called
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SeVen. We demonstrated by simulations and experiments that SeVen can be used to mit-
igate Slowloris and HTTP POST attacks. We already have carried out experiments over
the network for the GET Flooding attack with great level of availability, however in order
to stick with the thesis results we did not mention it in this paper. We have tested it with
other web-servers, e.g., nginx. We are implementing the alternative selective strategies,
e.g., using different probability distributions. In order to protect multiple servers, we are
incorporating load balancing strategies into SeVen. We are also investigating whether
SeVen can be used to mitigate second order DoS attacks [Olivo et al. 2015].
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