XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

Sampling and similarity hashes in digital forensics: An
efficient approach to find needles in a haystack

Vitor Hugo Galhardo Moia', Marco Aurélio A. Henriques!

School of Electrical and Computer Engineering (FEEC)
University of Campinas (UNICAMP)
Campinas, SP, Brasil 13083-852

vhgmoia, marco@dca.fee.unicamp.br

Abstract. The amount of data handled by forensics examiners has grown signif-
icantly over the past few years. Investigations involving digital devices used
to store valuable information related to crimes are becoming very common.
Methods aiming to reduce the time spent in each case and yet be effective in find-
ing evidences are necessary. Hash-based functions appeared as a solution, but
they are limited only to yes/no answers, failing in detecting similarities among
objects. New approaches have been proposed to solve this problem as, for exam-
ple, the similarity hash. This function can find small-scale similarities in objects
with different contents. However, such flexibility comes with a price: The high
cost compared to traditional approaches. In this paper, we propose and evalu-
ate the combination of similarity hashes and sampling techniques, where only
a small portion of a seized media is analyzed to produce reliable results for a
triage process in a short period of time. We also propose to apply similarity
hashes to the sector level and present a new approach of clustering sectors to
reduce even more the investigation time. The proposed approach can reliably
identify even small fragments of deleted files that still remains in a seized media.

1. Introduction

With the increasing volume of data in today’s world, forensics examiners face a significant
challenge in analyzing seized devices. Cases where digital electronics are used to store
data related to crime are increasing. Users store more and more data as storage capacity
increases and prices get cheaper. On the other hand, forensic professionals normally do
not have the resources to scale in the same way. Methods capable of evaluating seized
devices in a reasonable time become necessary to deal with this trend.

Hash-based techniques are an efficient solution for identifying objects in inves-
tigations. Forensics examiners create hashes for the seized media objects and look up
for matches in a database containing hashes of interest objects. However, hash functions
fail in identifying similar objects. They only give yes/no answers. If two files are iden-
tical, their hashes will be precisely the same, but if they differ at least by one bit, their
hashes will be completely different. This way, documents with small changes will not be
detected, and examiners may lose important evidences.

To overcome such limitation, researchers have employed similarity hashes, which
are similar to hash functions in using unique representations for data, but with the dif-
ference that small variations will reflect in small changes in the digest. They can create
representations that allow us to compare two objects and give a similarity value for them.

693 ©2016 SBC — Soc. Bras. de Computagido

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

In this work, we use sdhash as our similarity tool [Roussev 2010], although it is very ex-
pensive in relation to traditional hash functions. We present an approach to minimize its
high cost, combining it with statistical sampling techniques to reduce the amount of data
analyzed and hence the number of similarity hashes generated. Also, we work at the disk
sector level (or equivalent) with the purpose of detecting even small fragments of objects
that remained in the media after been deleted but not overwritten.

2. Related Work

A significant amount of work has been done with hash functions to reduce the volume of
data analyzed when comparing data in a seized device with a database of known interest
objects. This database can encompass bad objects, which can be a lead to follow, or
good ones, eliminated from the analysis, like operating system data, well-known software
objects etc. The comparison is in a hash level, using algorithms like MDS5 or SHA-1. In
this work, we will focus on the approach using a bad objects database for our experiments.

Hash functions are used to create a representation of an input with arbitrary size
into a fixed-length size value. If a single bit of the input is changed, the output will
be radically different. They are commonly used in integrity checks, digital signatures,
and many other applications. Their security stands on the fact that it is computationally
infeasible to find two different inputs with the same hash.

However, hashing data has some drawbacks in the forensics field. They only give
binary answers. Malicious users can make small changes to objects to make this technique
fail, since their hashes will be far different. To mitigate this problem, researchers adopted
another approach to deal with it. This approach, known as piecewise hash, splits the
object into fixed-size segments, generate hashes for each one of them and then make
the comparison. Besides identifying whole objects, this approach could also be useful
to deal with data in disk sectors. However, there are also some difficulties in using this
technique. Choosing the appropriate object block size is one of them, due to alignment
issues. If objects are modified, their stored fragments in the hard drive may not align with
the ones in the database. This way, the hashes will be different, and the method will fail.

To overcome this issue, a new method was proposed to compare objects. This
mechanism, called similarity hash or similarity digest, can detect commonality among the
binary structure of objects, providing a confidence measure of the similarity among them.
The first idea of using such method was proposed by Rabin [Rabin et al. 1981], using
random polynomials to create data fingerprinting. More recent research include the ssdeep
algorithm [Kornblum 2006], which combines piecewise and rolling hash techniques. Data
is broken into pieces using a rolling algorithm, and for each piece, a hash function is
used to produce a digest. In the end, all of these digests are concatenated to generate
the representation of the object. Other methods with the same purpose can be found in
Martinez et al.” work [Martinez et al. 2014].

A more recent method for creating similarity hashes, called sdhash, was presented
by Roussev [Roussev 2010]. This method will be discussed in the next section and used in
this work due to its interesting characteristics and because of its availability, performance,
and documentation. In another work, Roussev presents a comparison between sdhash and
ssdeep and shows that the former has a better performance than the latter [Roussev 2011].

Another technique used in the present work is statistical sampling, with the pur-

694 ©2016 SBC — Soc. Bras. de Computagido

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

pose of reducing the amount of data analyzed in an investigation. Instead of examining
all objects from the seized media, we extract random samples of it to make a statement
about the entire population. We aim to implement the same idea of sampling discussed
in Garfinkel’s work [Garfinkel et al. 2010], but using similarity hashes instead of block
hashes to increase the effectiveness of the search for evidences. We also use a sector level
approach in order to detect even small parts of target data. This way, we expect to reduce
the amount of time to pursue a triage process and increase the accuracy of the search,
where evidences with small changes will not confuse the investigation.

3. SdHash: Similarity Digest Hash

The sdHash tool, developed by Roussev [Roussev 2010], has the purpose of selecting
multiple features that are most likely to be unique to an object in order to produce a
similarity representation. Fig. 1 illustrates the overall process performed by this tool.
First, features (sequence of B bytes) are extracted from the object and have their entropy
calculated. Then a filter selects the ones considered the best in representing the target.
The next step is the creation of a sequence of Bloom Filters [Bloom 1970] to generate the
object representation, as illustrated in Fig 2. In this process, up to f selected features are
hashed (using SHA-1 algorithm) and the result is split into five sub-hashes. The 11 least
significant bits of each sub-hash are taken to address the bits within the Bloom filter. The
implementation described in the Roussev’s paper uses B=64 and 256-byte Bloom filters,
with up to f = 128 features mapped to each filter. New filters are created as needed.

[> Feature |:>
selection

Object

Features
<: Filtering Weak
Selected Features Features

sdHash
Generating the |

similarity hash

Figure 1. Overall process of generating a similarity hash with sdhash

Comparing two similarity hashes means comparing their Bloom filters. The first
filter from the first object is compared to every filter from the second one. The maximum
similarity score is selected. The process is repeated for all other features from the first
object. Finally, an average of the results is calculated to produce a score which varies
from -1 to 100 [Roussev 2010]. Roussev and Quates [Roussev and Quates 2012] point
out that a result of 0 (zero) means that the objects are uncorrelated, while -1 (a rare
occurrence) means that at least one of the digest have no enough features to produce a
reliable comparison. Results ranging from 21-100 are reliable and indicate the existence

695 ©2016 SBC — Soc. Bras. de Computagido

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

Hash
SHA-1

i-Feature

Set of features

@ Splitting
1 2 3 4 5
[1 [] [1 [1 [1
32 32 32 32 32
// // // // //
The 11 least significant bits are selected to address the bits within the filter
11 11 11 11 11
vl vl v A

EICZM 0 0 1 00010001000
211

Figure 2. Process of mapping up to f features into each Bloom filter

of significant similarities between the objects. However, for simple object types, such as
text, a 5 (five) score could be meaningful and worth further evaluation. The authors also
highlight that a value of 100 does not guarantee that the objects are identical.

4. Similarity hashes and Digital Forensics

The sdhash tool has a great potential to be used in forensic investigations for identify-
ing similar objects. Examiners can look in a seized media for objects of interest, be-
ing able to detect their targets even though they have been partially modified. Roussev
[Roussev 2011] mention another application for this tool, which is finding embedded ob-
jects. In this case, we can look for a picture in a seized drive and find not only the picture
itself but any occurrence of it even inside other objects.

However, besides the advantages and flexibility achieved with sdhash, its high
cost compared to traditional approaches (hash functions) is a major problem. Although
we can not estimate the cost of this tool easily, as it is file-dependent, we can calculate the
number of features selected by looking at the metadata contained in the digest generated
for the object [Roussev and Quates 2012]. For example, for a certain 1 MB object tested,
a total of 15.981 features were used. As each feature needs to be hashed before inserted
in the Bloom filter, a total of 15.981 hashes need to be performed. In this case, the sdhash
will be 15.981 times more expensive than the traditional hash method (SHA-1). As the
object size grows, so the number of hashes. Even small objects (1 MB) require thousands
of hashes to build their representation. This shows how sdhash is expensive and the need
for improving somehow its efficiency.

Another problem is the size of the similarity representation, as described by Rous-
sev [Roussev and Quates 2012]. Hash functions produce a finite and well-known number
of output bits, independent of object size. However, sdhash tool outputs a digest about
3% of the object size, according to empirical tests. This tool also requires more time to
produce the digests, since it needs to create and consolidate several Bloom filters. There-
fore, object size is a major problem in the use of such tool, as it can be a bottleneck in
the triage process. For this reason, we propose a new way to deal with these problems by
using statistical methods, presented in the next section.

696 ©2016 SBC — Soc. Bras. de Computagido

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

5. Sampling in digital forensics

In order to reduce the time taken for an examiner to classify a seized media as worth
or not for further and deeper analysis, we could reduce the amount of data actu-
ally processed. This could be done following the ideas presented by Garfinkel et al.
[Garfinkel et al. 2010]. The authors show how to adapt the classical "Urn Problem with-
out replacement” in the forensics context. They say that taking enough random samples
from a set of objects, there is a good chance that this sample represents the entire dataset.
The amount of samples required can be obtained from the following equation, which
calculates the probability of missing one of the objects of interest.

P ()

T (N = (i—-1)) - M)
o (N=(i-1))

=1

Here NNV represents the total number of objects in the set, M the number of targets
(objects of interest), and n the number of objects required to be sampled. We will use
this idea combined with similarity hashes in our work to reduce the time for a triage in
investigations. Our goal is to verify whether a media contains at least one object from a
database of interest objects. If so, we can take this media for further analysis.

In the calculus, the variable N is the seized media size. As we work at the disk
sector level, the value for NV will be the number of media sectors. For determining the M
value, we can use different approaches. The first one considers the case where we want to
find a particular object, which is just using its size (in sectors) as M value. Other scenario
consists in figuring out whether a seized drive contains any object of a database or not.
In such case, we need to adapt the Urn Problem to this context, since we do not know
whether the media contains evidences or not. We have to consider that at least one object
of size M (estimated value) will be present in the media in order to comply with one of the
basic assumptions of the problem: The presence of an object inside the ”urn”, or in our
case, the media. Then, we calculate the formula using the estimated M value (in sectors)
to obtain n for a chosen probability rate. This means that we need to take n random
samples from the media and with probability 1 — p we will find objects with this size or
larger (we can adjust this value as needed, but the n value will change). We highlight that
the examiner can control the M value according to the investigation, using the average
size of the objects from the database or a common object size for the type of searched
objects for that particular scenario. High values for M increase the chances of missing
smaller objects but decreases the required triage time. Therefore, prior knowledge about
the search can potentially help in determining the M value.

Using the adapted Urn Problem equation and controlling its error rate, examiners
can look for objects using random samples with high probabilities of success. For ex-
ample, considering a 2 TB seized disk (which contains approximately 500 million 4 KB
sectors) and that we want to find a 100 MB object (25,000 sectors) on it. Using the Eq.
I with N = 500,000,000, M = 25,000 and fixing a success rate of 99%, we need to take
around 92,500 samples from the hard disk drive in order to find at least one fragment from
the desired object.

697 ©2016 SBC — Soc. Bras. de Computagdo

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

6. Using sampling to reduce sdhash cost

In order to minimize the time to analyze a large volume of data, we propose an approach
to combine the use of similarity hashes, using the sdhash tool, with sampling techniques.
We will also work with object fragments (disk sectors) instead of whole objects since
we want to encompass scenarios where the file system is corrupted, and no metadata
about its structure is available. Besides, taking sectors directly from a hard drive give
us the possibility of finding data that were deleted but some of its fragments were not
overwritten.

However, using the sampling technique with object fragments can also be costly.
The number of similarity hashes generated and of comparisons between the datasets in-
crease as their sizes grow, even though we use samples. This is also compounded by the
fact that we are working with fragments instead of whole objects (it increases the number
of objects). With this in mind, we propose the use of clusters to decrease this cost.

6.1. Clustering approach

We propose the use of clusters to reduce sdhash cost. We take a determined number of
sectors from the seized media being analyzed and gather them in a single object, which
will have the similarity hash generated and will be used in the comparison. The fragments
can and most of the times will be from different objects and yet the sdhash tool will be
able to identify similarity due to its characteristics.

Our objective is to figure out whether a seized media contains objects of interest
based on a comparison to a database, in the shortest possible time. To this end, we ran-
domly sample sectors from the disk, gather them into clusters of j sectors and generate
their similarity hash representation using sdhash. Then, we compare these digests to a
database in order to find common interest objects.

One question that stands is how to take the samples. We propose two different
ways to perform this operation: diffuse or contiguous. In the first one (Fig. 3), we select
objects (sectors) randomly around the seized media and group them into clusters, which
will be sdhashed and compared to a database of interest objects. The second method
consists in taking contiguous fragments around some randomly chosen sectors in order
to build the clusters (Fig. 4). It is important to highlight that for fragmented disks both
methods seems to work fine, while for a defragmented one, the second method will not
get fragments from many different files. In this work, we will only use the diffuse mode
for sampling. The other method will be covered in future studies.

6.2. Experiments

We conducted experiments to validate our ideas using sdhash tool and sampling tech-
niques. To this end, we simulated specific scenarios to measure the efficiency of this
approach in each one, in order to find evidences in a triage process. Our goal is to find at
least one object fragment from a database of interest objects present in the seized media
being analyzed. If so, this media will be selected for further and deeper analysis.

We first compared our approach of using similarity hashes and sampling to the
common one where a similarity representation is generated for every object in seized
media. Then, we made experiments with the first approach exploring different scenarios
and evaluating the impact of using the clustering method.

698 ©2016 SBC — Soc. Bras. de Computagdo

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

Sector

Selected
randomly Track

Randomly

Disk cylinder sectors Disk cylinder chosen sector
Figure 3. Diffuse method of se- Figure 4. Contiguous method
lecting objects for a cluster. for clustering

In our experiments we selected two datasets and labeled them as DBIO (Database
of Interest Objects) and SM (Seized Media). The DBIO is the largest one, with 2204
different files (218458 sectors), while the second have 549 (74929 sectors). The datasets
were taken from the ¢5 corpus [Roussev 2011] and encompass different file formats: text,
pdf, html, doc, ppt, jpg, xIs and gif. For the purpose of our experiments, the DBIO and SM
datasets have only four files in common (each one encompass several objects fragments),
with the following format and size: F}: doc (1039 sectors), Fb: ppt (469 sectors), Fj: text
(87 sectors) and Fjy: pdf (273 sectors). Our goal is to find at least one object in common
in the shortest time possible. All files in the SM dataset were fragmented (broken into 4
KB objects) to simulate disk sectors. For the DBIO dataset, we disposed the objects in
three ways to simulate different scenarios: fragmented (4 KB), whole file and image file.

We first evaluated the approach of using sdhash without sampling. For this end,
we followed the steps below:

1. Creation of a similarity hash representation for every object in the DBIO.
2. Creation of a similarity hash representation for every object of the SM.
3. Comparison of similarity hashes between DBIO and SM objects.

4. Evaluation of the results.

The next experiment evaluated the inclusion of sampling in the process. The first
step is to make a sample of the SM dataset. To this end, we used the approach described
in section 5. We first estimated the object size we wanted to search and applied the
Urn Problem equation using this value and the SM total size (74929 sectors). In our
experiments, we chose as file size of 1039 sectors (the size of the greatest common file
available in both datasets) and adopted a 99,9% success rate. Using the equation, we got
a result of 550, which is the required number of samples we have to take from the SM.

Then, we made several experiments focusing on the described approach with dif-
ferent scenarios in order to evaluate the impact of clustering and determine the best con-
ditions for using it. In general, we did our search following the steps below:

Creation of a similarity hash representation for every object in the DBIO.
Sampling the SM dataset.

Creation of a similarity hash representation for the samples/clusters of SM.
Comparison of similarity hashes between DBIO objects and SM samples/clusters.
Evaluation of the results.

Al .

699 ©2016 SBC — Soc. Bras. de Computagdo

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

Our first experiment involved comparing the objects from the SM with those in
DBIO dataset in the fragment level, in order to simulate disk sectors (4 KB). We also
conducted this experiment using our idea of clustering. We choose the cluster size c a
value of 100 sectors since it was a reasonable value got from empirical tests. For larger
values, we identified an increasing number of false positives (results pointing out similar-
ity between unrelated files) while smaller ones did not present a significant reduction but
only more comparisons to make. In the next experiment, we evaluated the use of whole
files representing the database instead of their fragments. Again, we did it using clusters
and without them. The last experiment compared the SM fragments to a DBIO image
file. To this end, we created a similarity hash using the entire dataset in order to create a
single representation of it. For default, the sdhash breaks large files in 128 MB pieces and
creates a similarity hash for each one of them [Roussev and Quates 2013].

7. Discussion

The results of our experiments are presented in tables 1 and 2. In the first one, we present a
comparison of sdhash with and without sampling, using DBIO and SM in the fragmented
level. However, there is a difference between the maximum comparison number of both
techniques (second column) to the expected value (16.368.839.482 without sampling and
120.151.900 with it). This is due to sdhash does not work with objects smaller than 512
bytes and the datasets have a few ones which do not have this minimum size.

When we analyze the impact of adding the sampling technique, a significant re-
duction in the number of comparisons is noticed, requiring about 136 times fewer op-
erations. Also, we present the number of objects of interest found by each technique.
Both found more objects than there really are. This exceeding value represents the false
positives generated by them, minimized by the use of sampling.

The cost of each technique is presented in the last column of table 1. It is repre-
sented by the number of hashes functions (SHA-1) required to generate the representation
of each dataset object. For the traditional approach using a hash-based method, the value
is equal to the objects number: each one only requires a single hash to create its represen-
tation. However, a high cost is observed using sdhash (about 224 times more expensive
than the traditional technique), which is minimized by the adoption of sampling (reduced
to 167 times). This way, it is evident that using sdhash is very expensive and its combi-
nation with statistical methods becomes essential towards a practical approach. To this
end, we focus on this combination and propose the use of clusters to reduce even more
the costs, evaluating different scenarios in order to find the best ones in which we have
the greatest reduction in costs.

Table 1. Experiments comparing sdhash with and without sampling on the frag-
ment level, measuring their efficiency and the cost based on hash functions

#Max. #Objs of #Hashes functions
Technique Comparisons | interest (SHA-1)
found DBIO SM Total
sdhash 16.343.700.471 | 9114/ 1868 | 48.947.005 | 16.791.207 | 65.738.212
sdhash & Sampling 120.031.450 62/22 48.947.005 124.979 49.071.984
700 ©2016 SBC — Soc. Bras. de Computagdo

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

We present in Table 2 the results of sdhash and sampling techniques for different
scenarios, evaluating the use of our clustering approach. With this technique, the number
of comparisons between DBIO and SM were reduced by a factor of ¢ (size of the cluster).
However, at the same time, in some experiments as cases #3 and #5, this technique is
ineffective since no matches were found when comparing the object fragments with the
DBIO in whole file and image file formats. The objects encompassing the cluster interfere
in the creation of the similarity representation and thwart the comparison (the similarity
among them will be slight). Only case #1 when the comparison is made considering the
DBIO fragmented, we had significant results. Also, in the scenarios where we did not use
cluster and consider the DBIO dataset in whole file and image file formats (#4 and #6), the
comparisons decreased, but the number of false positives proportional to the comparisons
is elevated in relation to the other scenarios (#1 and #2). Also, given an object fragment,
it is harder to detect similarity comparing this small datum to a database image file as the
size proportional between them increase. This makes our goal of identifying fragments of
deleted data fail.

Table 2. Experiments with sdhash using different object formats

#Max. #Matches Database Objs of interest #Features

#Exp. | Comparisons 20-100 Clusters format F F generated
1 1.309.434 107 Yes Fragmented | 11(4)/4 | 20(15)/18 | 48.985.337

2 120.031.450 238 No Fragmented | 17(4)/4 | 45(15)/18 | 49.071.984

3 12.870 0 Yes Whole file 0/4 0/18 14.363.578

4 1.179.750 149 No Whole file | 5(4)/4 15/18 14.450.225

) 42 0 Yes Image file 0/4 0/18 10.587.068

6 3850 288 No Image file 4/4 17(15)/18 | 10.673.715

Table 2 also presents the total number of matches between the datasets according
to a range of scores got from sdhash, where the results express the similarity between
objects in the SM sample to those in the DBIO. We knew beforehand that there were
only 22 objects in common between the datasets after the sampling, where 18 belongs
to file F7 and 4 to F,. The other two objects (F35 and F);) had no fragments selected in
the sample. We also show the number of matches restricted to the objects selected and
the precision in the experiments on finding them, as well as the number of false positives
by showing the total number of matches and the number of true positive (TP) matches
(parentheses). For example, in experiment #2, object F5 had 45 matches for only 18
TP possible. In the parentheses, we show the number 15 which is the number of TP
matches. We highlight that only scores of similarity > 20 were counted, since they are
the ones significant (reliable) [Roussev and Quates 2012]. Object F7 had 100% of cover
in experiments #1, #2, #4 and #6, while F5 a total of 83.34% for the same cases.

Comparing the expected number of matches to the one got from the total matches
(third column), we can see a high number of false positives results (considering results
with score > 20). The elevated number will be analyzed in future studies, as well as mea-
sures to properly address them, but we believe that it happens due to common structure
between objects of the same type. Furthermore, Young et. al [Young et al. 2012] mention
that the cause can also be due to common NULL (0x00) blocks.

701 ©2016 SBC — Soc. Bras. de Computagdo

XVI Simpésio Brasileiro em Seguranga da Informagao e de Sistemas Computacionais — SBSeg 2016

8. Conclusions

Digital forensic investigation is becoming a critical field as its techniques needs to scale to
follow the fast increase in media storage capacity. In this work, we presented a proposal
for using similarity hash tools, such as sdhash, combined with sampling techniques to
reduce the time of a triage process. We showed how expensive sdhash is and possible
ways to reduce the number of similarity hashes generated and of comparisons, using
sampling techniques and clustering disk sectors. Besides the reduction of the number
of comparisons and features generated, this approach showed effective in finding similar
objects of interest and presented a smaller number of false positives. Also, our technique
gives examiners more flexibility and allow them to find even objects that were deleted
but some of its fragments remain on disk. We also showed limitations of clustering by
evaluating different scenarios, which proved to be ineffective when comparing clusters to
database image files and to whole files. On the other hand, we had good results comparing
them to a fragmented database.

Although our experiments have shown that sdhash could identify objects of in-
terest with a small set of data taken randomly from a seized media, there is a lack of
understanding about the false positives generated and how to treat them, a subject that
will be covered in a future work.

References
Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422-426.

Garfinkel, S., Nelson, A., White, D., and Roussev, V. (2010). Using purpose-built func-
tions and block hashes to enable small block and sub-file forensics. Digital investiga-
tion, 7:S13-S23.

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise
hashing. Digital investigation, 3:91-97.

Martinez, V. G., Alvarez, F. H., and Encinas, L. H. (2014). State of the art in similarity
preserving hashing functions. In Proceedings of the International Conference on Secu-
rity and Management (SAM), page 1. The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing (WorldComp).

Rabin, M. O. et al. (1981). Fingerprinting by random polynomials. Center for Research
in Computing Techn., Aiken Computation Lab., Univ.

Roussev, V. (2010). Data fingerprinting with similarity digests. In IFIP International
Conf. on Digital Forensics, pages 207-226. Springer.

Roussev, V. (2011). An evaluation of forensic similarity hashes. Digital investigation,
8:3441.

Roussev, V. and Quates, C. (2012). Content triage with similarity digests: The m57 case
study. Digital Investigation, 9:S60-S68.

Roussev, V. and Quates, C. (2013). sdhash tutorial: Release 0.8. http://roussev.
net/sdhash/tutorial/sdhash-tutorial.pdf. Accessed 2016 Set 13.

Young, J., Foster, K., Garfinkel, S., and Fairbanks, K. (2012). Distinct sector hashes for
target file detection. Computer, 45(12):28-35.

702 ©2016 SBC — Soc. Bras. de Computagdo

